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Research advances in the relationship
between nonalcoholic fatty liver disease
and atherosclerosis
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Abstract

Nonalcoholic fatty liver disease (NAFLD) is a metabolic stress-induced liver disease that is closely related not only to
genetic susceptibility but also to insulin resistance and highly linked with metabolic syndrome. In recent years, the
prevalence of NAFLD has increased rapidly, paralleling the epidemic of type 2 diabetes mellitus and obesity leading
to cardiovascular disease. It has been demonstrated that NAFLD is highly associated with atherosclerosis. With
recently gained knowledge, it appears that NAFLD may induce insulin resistance, dyslipidemia, oxidative stress,
inflammation, and fluctuation of adipokines associated with atherosclerosis. In this review, we aimed to summarize
recent discoveries related to both NAFLD and atherosclerosis, and to identify possible mechanisms linking them.
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Introduction
Nonalcoholic fatty liver disease (NAFLD) is a chronic
liver disease that occurs in patients who consume little
or no alcohol [1]. It has become one of the most com-
mon liver diseases worldwide and is characterized by
parenchymal cell steatosis and steatohepatitis [2, 3],
which can progress to cirrhosis, with or without liver
failure and hepatocellular carcinoma (HCC) in a subset
of patients [1, 4]. With increasingly sedentary lifestyle
habits, NAFLD now has become the most common eti-
ology of chronic liver disease in the US [5]. In Asian
counties, the prevalence rates of 12 %–24 % [6] and in
large cities in China with reported approximately 15 %
[7]. NAFLD can occur at any age [8, 9]. NAFLD is
closely associated with metabolic syndrome (MS), with
nearly 90 % of NAFLD patients having more than one of
the following conditions: obesity, type 2 diabetes mellitus
(T2DM), hypertension, and dyslipidemia [10]. Because
approximately 33 % of patients with NAFLD also have
MS, NAFLD was widely considered to be the hepatic
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manifestation of MS [11, 12], but now more like a pre-
cursor of MS [13]. Although the pathogenic mechanism
of NAFLD remains uncertain, the “two-hit” theory is
widely accepted by us [14]. At present, Tilg, etc. have
proposed the multiple parallel hits hypothesis. They
suggested that inflammatory mediators derived from
various tissues but especially from the gut and adipose
tissue could play a central role in the cascade of inflam-
mation, fibrosis, and finally tumor development [15].
Atherosclerosis (AS), a pathological plaque formation

within blood vessels that initiates intimal thickening (the
earliest lesion in the arterial wall [16]), hardening of the
arteries, and narrowing of the lumen, is a leading causa-
tive factor for cardiovascular disease (CVD). Multiple
phenotypes of AS disease based on pathological features
and propensity for thrombosis have recently been pro-
posed [17] according to the modified classification of
American Heart Association (AHA) [18]. The classifica-
tion includes intimal xanthoma, pathological intimal
thickening, fibroadenoma, thin fibrous cap atheroma,
and fibrocalcific plaque. The development of atheroma-
tous plaques with a necrotic core represents an invasion
of lipid deposits by macrophages. Release of activated
proteolytic enzymes damages the surrounding tissues,
leading to the formation of vulnerable plaque. The
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Table 1 Clinical studies about the link between NAFLD and AS

Author, year NAFLD/NASH is associated with
AS-related phenotypes

Mishra S, 2013 [115] NAFLD is associated with carotid intima-media
thickness

Li N, 2014 [116] NAFLD is associated with carotid artery wall
thickness

Colak Y, 2012 [117]

Sunbul M, 2014 [118]

Kozakova M, 2012 [119] NAFLD as estimated by the fatty liver index is
associated with early carotid plaques in
middle-aged nondiabetic subjects

Yilmaz Y, 2010 [120] NAFLD is associated with decreased coronary
flow reserve

Pacifico L, 2010 [121] NAFLD is associated with reduced brachial
artery flow-mediated vasodilation and
increased carotid artery wall thickness

Alkhouri N, 2011 [122] NAFLD is associated with increased arterial
stiffness and reduced brachial artery
flow-mediated vasodilation

Villanova N,2005 [123] NAFLD histology is associated with reduced
brachial artery flow-mediated vasodilation

Colak Y, 2012 [117]

Ampuero J, 2015 [124] NAFLD is associated with carotid intima-media
thickness and carotid plaques
(meta-analysis of 14 studies involving
4130 subjects)

Guleria A, 2013 [125] NAFLD is associated with carotid intima-media
thickness and flow-mediated dilatation %

Torun E, 2013 [126]

Chen Y, 2015 [127] NAFLD is associated with carotid intima-media
thickness and brachial-ankle pulse wave
velocity in patients with advanced fibrosis

Ozturk K, 2015 [128] NAFLD is associated with PWV, CIMT and
FMD levels in young adult men

Pastori D, 2015 [129] NAFLD is associated with FMD level in
patients with cardiometabolic risk factors.

Puiq J, 2015 [130] NAFLD is associated with CIMT in
morbid obesity

Kim SK, 2014 [131] Nonalcoholic Fatty liver disease is associated
with increased carotid intima-media thickness
only in type 2 diabetic subjects with insulin
resistance

Kucukazman M, 2013 [11] NAFLD is associated with CIMT and FMD
levels
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pathophysiology of AS is best described by “endothelial
damage theory”, which implies that the components of
AS, such as hypertension, dyslipidemia, etc., induce vas-
cular intima injury to further stimulate the formation of
atherosclerotic lesions. In addition, AS can become a
systematic chronic inflammation involving many inflam-
matory cells and amboceptors [19].

The association between NAFLD and AS
NAFLD is closely linked with MS [11–13], and is highly
associated with abdominal obesity, atherogenic dyslipid-
emia, and diabetes. exposing subjects with NAFLD to an
increased risk of CVD [20]. Studies have also shown
that NAFLD is linked to CVD independent of other
metabolic risk factors [21] as summarized in Table 1,
suggesting that it is an active contributor to the
pathogenesis of atherosclerosis and is not just a
marker for CVD [22]. Various pathogenic mechanisms
have been suggested as possible explanations for ac-
celerated atherosclerosis and increased CVD burden
in NAFLD patients, including a high oxidative stress
state due to steatosis-stimulated fatty-acid oxidation
in the liver [23], systemic release of proatherogenic
molecules like tumor necrosis factor-α, interleukin-6,
and oxidized LDL cholesterol [24], increased IR [25],
and macrophage activation [26]. The atherogenic role
of hepatic inflammation is also supported by the fact
that patients with NASH have increased atheroscler-
osis when compared with patients with simple steato-
sis [27, 28]. Carotid intima-media thickness (CIMT) is
a reliable index of subclinical atherosclerosis [29] and
a mirror of atherosclerosis progression in NAFLD
patients. Observational studies suggest that NAFLD is
associated with increased CIMT and carotid plaques
in both children and adults [30]. Therefore, NAFLD
is closely associated with AS and it seems to an early
risk factor for AS.
Generally, the increased risk of CVD in NAFLD pa-

tients [31, 32] might reflect the coexistence of MS com-
ponents. This may suggest that NAFLD confers a
cardiovascular risk above or even beyond its association
with the individual components of MS [33]. The high
prevalence of NAFLD in AS patients has stimulated an
interest in the possible role of the liver in the develop-
ment of AS. Therefore, identification of the mechanism
linking NAFLD and AS may be helpful in the develop-
ment of a therapeutic target in AS [34] and in the pre-
vention and treatment of CVD in early NAFLD patients.

Possible mechanisms linking NAFLD and AS
NAFLD can contribute to and aggravate AS develop-
ment, but the precise mechanism remains unclear. The
following display possible linkages between these condi-
tions at the molecular level.
Insulin resistance (IR)
IR, as the “first-hit” to the liver, contributes to the devel-
opment of both NAFLD and AS by disrupting cellular
energy metabolism, damaging the peripheral tissue,
interfering with the ingestion and synthesis of liver fatty
acid, and promoting fatty acid accumulation in the
benign liver, which leads to hepatic IR due to a lack of
suppression of endogenous liver glucose production
[35]. NAFLD patients with IR experienced additional
stresses to the liver based on the presence of hypergly-
cemia, hyperinsulinemia, hyperlipidemia, and damage to



Xu et al. Lipids in Health and Disease  (2015) 14:158 Page 3 of 8
the vascular endothelial cells (VECs). All of these factors
participate in the development of AS. Furthermore, in-
creased VEC adherence can induce proliferation of smooth
muscle cells (SMCs) and promote the synthesis and release
of growth and inflammation factors in various pathways,
which contributes to the progression of AS.

Dyslipidemia
Given that the regulation of lipid influx, synthesis, and
metabolism is disturbed in the liver of NAFLD patients,
NAFLD is associated with dyslipidemia, which leads to
an up-regulation of the sterol regulatory element binding
protein-1c (SREBP-1c), a transcription factor for some
de-novo lipogenesis genes, to inhibition of the free fatty
acid (FFA) oxidation and stimulation of liver fat content
(LFC) [35–37]. Likewise, SREBP-2 and low-density lipo-
protein (LDL) receptor are down-regulated in NAFLD
patients, leading to inhibition of cholesterol uptake and
very low-density lipoprotein (VLDL) synthesis in liver
cells, resulting in an increase in hepatic triglycerides
(TG) [36]. Increased TG levels can further disturb the
atherogenic lipid profile by lowing high-density lipopro-
tein cholesterol (HDL-C) (an anti-AS factor) [37] and
increasing small and dense LDL particles and oxidated
LDL (ox-LDL) [38]. Ox-LDL contributes directly to AS
and accelerates the development of local atherosclerotic
plaques [39] as a key molecular connection between
NAFLD and AS. Furthermore, as blood FFAs are in-
creased due to increased energy intake and decreased
FFA oxidation [40], endothelial cells (ECs) can be af-
fected morphologically with shrinkage and intercellular
space dilatation. With an increase in cellular permeabil-
ity, serum remnant-like particle cholesterol (RLP-C) can
easily gain access into ECs and block and interfere cellu-
lar activity, leading to AS [41]. Additionally, FFAs could
disturb the insulin level by inhibition of its gene tran-
scription through Jun N-terminal kinase (JNK) [42] to
contribute to IR and promote the development of AS.

Oxidative stress and lipid peroxidation (LPO)
Oxidative stress and lipid peroxidation (LPO), as the
“second-hit” to the liver in the development of NAFLD,
may be another important mechanism linking NAFLD
with AS. Oxidative stress is an imbalanced situation in
which the body’s production of reactive oxygen species
(ROS) exceeds its capability for ROS detoxification,
causing tissue damage [43]. ROS can be produced by in-
creased activity of reduced nicotinamide adenine nucleo-
side phosphate (NADPH) oxidase through activation of
phosphate kinase C (PKC) or by increase of β-oxidation
of peroxisomes and ω-oxidation of microsomes. It
induces levels of inflammatory factors [44], depletes NO
[45], destroys the endothelium-dependent vasodilatation
function [46], reduces the elasticity of blood vessels,
promotes endothelial cell apoptosis [47], contributes
to vessel smooth muscle cell hyperplasia [48, 49],
causes endoplasmic reticulum (ER) stress, leads to
hyperlipidemia, promotes apoptosis of macrophages in
the atherosclerotic plaque, and induces ox-LDL through
LPO [50, 51]. All of these metabolic derangement clearly
indicate that NAFLD is potential strongly associated
with AS.

Inflammation
Inflammation can induce IR [52], whereas reduction of
inflammation prevents IR development [53]. In NAFLD
patients, inflammation appears as an increases in the
levels of cytokines interleukin (IL)-6 and tumor necrosis
factor (TNF)-α, C-reactive protein (CRP), and monocyte
chemoattractant protein-1 (MCP-1) in peripheral blood
[54]. Increased hepatic expression of IL-6 and increased
blood levels of IL-6 may promote partial liver injury and
AS [51]. IL-6 can activate macrophages to secrete matrix
metalloproteinase-1 (MMP-1), induce mononuclear cells
(MNCs) to participate in the development of vessel
plaque, promote synthesis of LDL receptor and influx of
LDL into macrophages, enhance lipid deposition, and
stimulate vascular smooth muscle cell (VSMC) prolifera-
tion [55]. Inflammation and IR, therefore, participate in
the development of AS [56].

Matrix metalloproteinase (MMP)
MMPs, a main enzyme family involved in degradation
of extracellular matrix, is secreted predominantly by
MNCs, macrophages, and VSMCs. An increase in MMP
expression is detected in NAFLD patients [57], and this
increase may play a role in the course of liver fibrosis and
in the process or fracture of AS by degradation of fibrous
cap disruption of plaque and promotion of thrombus
formation preceded by formation of a vulnerable athero-
sclerotic plaque.

Levels of Adipokines
Adiponectin (APN), which is secreted by adipocytes, can
enhance insulin sensitivity in the liver and other tissues
to reduce the level of serum fatty acids and increase the
oxidation of fatty acids in the muscle [58]. It has been
found that APN levels are low in NAFLD patients inde-
pendent of metabolic disorder [54]. Althouth an increase
in APN expression can reduce TG, total cholesterol,
and LDL-C concentrations [59], stimulate vascular
endothelial nitric oxide synthase (eNOS) mRNA ex-
pression, and progressively reduce atherosclerotic le-
sions. The possible mechanism may involve increases
in superoxide dismutase (SOD) and eNOS activities
as well as APN expression, a decrease in MDA levels
[60], and inhibition of macrophage scavenger receptor
A1 expression and transformation to foam cells, inhibition
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of VSMC proliferation and migration to suppress plaque
disruption, and an increase in competitive binding be-
tween platelet growth factor (PDGF) and the BB receptor
to suppress signal transduction. It has been demonstrated
that APN inhibits the EC inflammatory reaction by affect-
ing the nuclear factor (NF)-κB signaling pathway [60, 61],
another key molecular pathway involved in AS.
Leptin, which is predominately produced by adipose

tissue, plays an important role in regulating food intake
and energy expenditure and has been found to be ele-
vated in NAFLD patients [60] in association with disease
severity [62]. In addition, leptin plays a crucial role in
aggravation of NASH [63, 64] and attenuation of AS.
Endogenous leptin resistance is associated with IR with
a synergistic effect. It can surpress apolipoprotein M and
APN levels, reduce NO synthesis by activating the
PI3-Akt-eNOS pathway [65], stimulate IMT, and serve
as a predictor of CVD [66].
Visfatin, a new adipocytokine expressed in visceral adi-

pose tissue (VAT) and with nicotinamide phosphoribo-
syltransferase (NAMPT) activity, is associated with some
of AS risk factors such as inflammation, endothelial dys-
function, vascular endothelial proliferation, and athero-
sclerotic plaque formation. Visfatin has been suggested
as a new indicator of the severity of NAFLD, as its
expression is closely and positively associated with the
degree of liver steatosis [67] and increased in the foamy
macrophages of AS plaques. Overexpression of visfatin
induces foamy macrophages to secrete MMP [68]. There-
fore, visfatin may be involved in the processes of both AS
and NAFLD.
Chemerin, a chemoattractant protein, is highly expressed

in the white adipose tissue (WAT) and liver of NAFLD
patients and functions to attract macrophages and imma-
ture dendritic cells (DCs) via binding with a chemotaxis
receptor. It has been suggested that chemerin may be
closely related to risk factors of CVD (such as hyperten-
sion) [69] and play a critical role in the development of
both NAFLD and AS, although the precise mechanism
still needs to be investigated.
Omentin, a cytokine expressed in omental adipose tis-

sues, has an anti-inflammatory effect and can increase
insulin sensitivity. It also has a vascular relaxation effect
via the regulation of NOS expression [70]. A significant
reduction in omentin expression in NAFLD patients
may imply a connection between omentin and AS.
Retinol-binding protein 4 (RBP4), a specific retinal

transfer protein, is compounded and secreted by liver
cells for binding and transportation of retinal from blood
into cells. RBP4 expression is increased upon liver injury,
NASH (as a sensitive maker of NASH) [71], or coronary
heart disease (especially with acute coronary syndrome
[ACS]) [72] and thus, has been proposed to be a new
risk factor for coronary heart disease [73]. Accumulating
evidence suggests that RBP4 can inhibit insulin activity
in ECs, weaken the level of NO, and promote endothe-
lial dysfunction [74] in the development of AS. Further-
more, gene expression of RBP4 has become a sign of
inflammation [25–76] in association with AS. However,
the detailed molecular interaction that occurs in the pro-
gression of NAFLD and AS remains to be elucidated.
Resistin is closely associated with NAFLD and AS [77]

via the following possible mechanisms: (1) resistin causes
vascular endothelial dysfunction by increasing the release
and expression of vascular cell adhesion molecule-1
(VCAM-1), intercellular adhesion molecule (ICAM)-1,
and pentraxin-3 (PTX-3); by decreasing tumor necrosis
factor receptor-associated factor (TR-AF)-3 expression to
induce CD40 and MCP-1 expression; by inducing P selec-
tin expression to stimulate NADPH oxidase activity; and
by enhancing the adhesion of monocytes as well as NF-κB
and activator protein-1 activities [78]. (2) NF-κB and per-
oxisome proliferator activated receptor-y (PPARy) can
regulate resistin secretion, and the NF-κB signaling path-
way plays an important role in the progression of AS with
the participation of resistin [79]. (3) Resistin promotes
SMC proliferation by activating the corresponding signal-
ing transduction pathway [80, 81], enhances the migratory
ability of SMCs [82], and induces oxidative stress and an
inflammatory reaction under dyslipidemia. Therefore,
resistin is involved in NAFLD and acts as an indicator of
the severity of AS [83].

Intestinal microbiota
A great deal of data have shown that the intestinal
microbiota was a risk factor of contributing to the devel-
opment of NAFLD [84]. The mechanism underlying
may as follows: the level of lipopolysaccharide (LPS) de-
rived by intestinal microbiota was increased in NAFLD
patients, and when increased plasma endotoxin concen-
tration in the portal vein, the clearance ability of the
hepatic Kupffer cells may become overloaded [85], lead-
ing to systemic endotoxaemia and mild chronic in-
flammation [86], inducing chronic liver disease [87].
Indeed, numerous studies support a complicated rela-
tionship between the intestinal microbiota and obes-
ity. Obese individuals are thought to have increased
the intestinal permeability [88], potentially inducing
an increased endotoxin load in the portal vein and
ensuing overload of the hepatic Kupffer cells. Obesity
and NAFLD are important risk factors for the devel-
opment of AS and subsequent CVD. In fact, intestinal mi-
croorganisms also seem to be involved in AS. Study
showing that plasma endotoxin levels above 90 percent
were linked with a three-time increase in cardiovascular
event risk [89], and animal experiments clearly indicating
that endotoxin injection accelerates cholesterol-induced
AS [90]. Besides, numerous studies have showing intestinal
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microbiota was closely link with IR, which is the common
mechanism of NAFLD and AS.
Fetuin-A
Fetuin-A, a a-2-HS-Glycoprotein, is a multifunction-
protein synthesized in the liver and secreted into the
circulation [91]. It is not only an endogenous inhibitor of
insulin receptor tyrosine kinase in the skeletal muscle, but
in the liver [92] resulting in IR. Furthermore, Pal et al. cur-
rently showed that Fetuin-A acts as an endogenous ligand
for toll-like receptor 4 (TLR4) and enhances both IR and
inflammation [93]. High level of Fetuin-A is closely associ-
ated with IR, atherogenic dyslipidemia, elevated inflamma-
tory cytokines, and decreased adiponectin levels [94].
These findings suggest that Fetuin-A may contribute to
both the course of NAFLD and development of AS, and it
is increased in NAFLD subjects. However, this glycopro-
tein inhibits ectopic calcification, a reduction level of
Fetuin-A might promote cardiovascular calcifications [94].
Moreover, this glycoprotein is an inhibitor of transforming
growth factor-b1 (TGF-b1), a major pro-fibrogenic growth
factor promoteing fibrotic changes in the liver and arteries
[95]. As mentioned above, we may reasonable speculate
that higher level of fetuin-A could prevent NAFLD and
AS development. Despite the function of Fetuin-A for
NAFLD and AS remains controversial, but it may be a link
between NAFLD and AS.
Obstructive sleep apnea (OSA)
OSA is one of the most common types of sleep apnea
[96] and is closely related to NAFLD (sharing it with
similar risk factors) [97] and early-stage AS, as determined
by the CIMT and pulse-wave velocity (PWV) [98, 99].
Increased CIMT was found in OSA patients [100], and
OSA is pathologically related to CVD and AS [101]. The
possible mechanistic links between AS and OSA may be
intermittent hypoxia and oxidative stress, the inflamma-
tory cascade, endothelial dysfunction, mechanical and
hemodynamic factors, and platelet activation and coagula-
tion abnormalities [102].
Heart-type fatty acid binding protein (H-FABP)
H-FABP, a cytosolic protein, transports fatty acids in
cardiomyocytes. It regulates the mitochondrial beta-
oxidative system within cardiomyocytes and accounts
for 10 % of cytosolic protein in these cells [103]. Serum
H-FABP is highly sensitive to myocardial ischemia and
used as a diagnostic biochemical indicator of ACS [104].
H-FABP is closely related to NAFLD and AS. H-FABP
levels are elevated in NAFLD patients and significantly
and positively linked to the CIMT (the early marker of
subclinical AS) [105].
Chronic kidney disease (CKD)
It has been discovered that NAFLD is positively associated
with CKD [106–108]; however, the possible mechanism
remains vague. Both NAFLD and CKD can increase the
risk of CVD [109, 110]. Obviously, a CKD-specific bone
mineral disturbance can strongly induce the calcification
of plaques and substantially promote AS development.
Therefore, NAFLD may affect or accelerate the develop-
ment of CVD with CKD [111].

Others
Markers of fibrinolytic and hemostatic function (such as
plasminogen activator inhibitor-1 antigen) are closely
linked with NAFLD, AS, and CVD [112, 113].

Conclusion
NAFLD is a metabolic stress-induced liver disease
that is closely related to IR and highly linked with
MS. In recent years, the prevalence of NAFLD has in-
creased rapidly with a higher concurrence in the patients
with T2DM and AS leading to CVD. NAFLD has emerged
as a public health problem worldwide and is highly associ-
ated AS, It has been demonstrated that NAFLD leads to
an increased risk of cardiovascular events and mortality
[114]. The mechanism linking NAFLD and AS is poorly
understood and may be related to IR, inflammation, oxi-
dative stress, lipid disorders, MMP activity, fatty hormone
levels, CKD, and OSA. We discussed and summarized the
available evidence in an attempt to reveal the mechanistic
connection between these two common pathological
conditions.
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